Nhiệt động lực học Độ nén

Bài chi tiết: Hệ số nén

Thuật ngữ "độ nén" cũng được sử dụng trong nhiệt động lực học để diễn tả độ chênh lệch các tính chất nhiệt động lực học trong khí thực từ những tính chất của khí lý tưởng. Hệ số nén được định nghĩa là

Z = p V _ R T {\displaystyle Z={\frac {p{\underline {V}}}{RT}}}

với p là áp suất của khí, T là nhiệt độ của nó, và V _ {\displaystyle {\underline {V}}} là thể tích mol của nó. Trong trường hợp khí lý tưởng, hệ số nén Z bằng với tính đồng nhất, và equal to unity, và phương trình trạng thái khí lý tưởng quen thuộc được phục hồi:

p = R T V _ {\displaystyle p={RT \over {\underline {V}}}}

thường thì Z có thể lớn hơn hoặc nhỏ hơn tính đồng nhất của khí thực.

Độ lệch từ trạng thái khí lý tưởng có xu hướng trở nên đặc biệt lớn lần điểm tới hạn, hoặc trong trường hợp áp suất cao hoặc nhiệt độ thấp. Trong những trường hợp này, một biểu đồ độ nén tổng quát hoặc một phương trình trạng thái thay thế thích hợp với vấn đề hơn phải được sử dụng để tạo ra kết quả chính xác.

Một tình huống có liên quan xảy ra trong khí động lực học siêu thanh, nơi sự phân ly gây ra gia tăng thể tích mol “ký hiệu”, bởi vì một mol ôxi, dưới dạng O2, trở thành 2 mol ôxi đơn nguyên và N2 tương tự phân ly thành 2N. Vì việc này xảy ra một cách động lực học khi khí chảy qua vật thể không gian, để thuận tiện nên thay đổi Z, định nghĩa cho 30 gam mol khí ban đầu, thay vì theo dõi trọng lượng phân tử trung bình thay đổi, từn mili giây. Quá trình chuyển đổi phụ thuộc vào áp suất này xảy ra đối với ôxi khí quyển trong quãng nhiệt độ từ 2500 K đến 4000 K, và trong quãng nhiệt độ từ 5000 K đến 10.000 K đối với nitơ.[3]

Trong vùng chuyển đổi, nơi sự phân ly phụ thuộc vào áp suất không hoàn thành, cả beta (tỷ lệ chênh lệch thể tích/áp suất) và nhiệt dung áp suất không đổi vi phân tăng lên rất nhiều.

Đối với áp suất trung bình, trên 10.000 K khí tiếp tục phân ly thàn electron và ion tự do. Z đối với plasma được tạo ra có thể được tính toán một cách tương tự đối với một mol khí ban đầu, tạo ra giá trị giữa 2 và 4 đối với khí bị ion hóa riêng phần hoặc một phần. Mỗi sự phân ly hấp thụ một lượng lớn năng lượng trong quá trình thuận và nó làm giảm rất nhiều nhiệt độ nhiệt động lực của khí siêu thanh giảm tốc gần vật thể không gian. Ion hoặc gốc tự do được vận chuyển đến bề mặt vật bởi sự khuếch tán có thể giải phóng ra thêm năng lượng (không phải nhiệt) nếu bề mặt gây xúc tác cho quá trình tái kết hợp chậm hơn.

Độ nén đẳng nhiệt liên quan đến sự nén đẳng entropy (hoặc đoạn nhiệt) bởi mối quan hệ,

β S = β T − α 2 T ρ c p {\displaystyle \beta _{S}=\beta _{T}-{\frac {\alpha ^{2}T}{\rho c_{p}}}}

qua quan hệ Maxwell. Tiếp tục rút gọn,

β T β S = γ {\displaystyle {\frac {\beta _{T}}{\beta _{S}}}=\gamma }

trong đó,

γ {\displaystyle \gamma \!} là tỷ lệ nhiệt dung. Xem chứng minh ở đây.